Primary Settling

CEEG 340–Introduction to Environmental Engineering Instructor: Deborah Sills Lesson 29–4 November 2019

Primary Treatment

Evaluate the following primary tank with respect to retention time, overflow rate, and weir loading, using the typical values provided in Table 1.

Design data:

Flow = $0.150 \frac{\text{m}^3}{\text{s}}$ Influent suspended solids = 280 mg/L Sludge concentration = 6% Removal Efficiency = 60% Length (effective) = 40.0 m Width = 10.0 m Liquid depth = 2.0 m Weir length = 75.0 m

Table 1: Typical values used to design primary sedimentation tanks (adapted from Introduction to Environmental Engineering, by Davis and Cornwell,)

Parameter	Range
Overflow Rate $\left(\frac{m^3}{dav \times m^2}\right)$	30-50
Hydraulic Retention Time (h)	1.5 - 2.5
Weir loading $\left(\frac{m^3}{day \times m}\right)$	<375

(1) CHECK HET

$$\begin{array}{c}
0 = \frac{4}{Q} = 40m \times 10n \times 2m} \times \frac{1}{M} \\
0 = 105 \text{ h}^{-1} \\
\hline
0 =$$

TSS and VSS

A 50 mL aliquot (i.e., representative sample) of a raw wastewater sample was filtered through a glass fiber filter, and dried for one hour in an oven set at 105 degrees C. The weight of the aluminum pan + dry filter (with no sample) was 1.2345 g, The weight of the aluminum pan + dry filter + dry sample was 1.2462 g.

The sample was then ingnited in a muffle furnace set at 550 degreess C. The weight of the aluminum pan + dry filter + ingnited sample was 1.2360.

1. Calculate total suspended solids (TSS) in mg/L.

$$TSS = (1.2462 - 1.2345) g \times 1000 m y/g$$

$$0.05 L$$

$$TSS = 230 m y/L$$

$$FSS = (1.2360 - 1.2345)g = 30 m y/L$$

$$0.05 L$$

2. Calculate volatile suspended solids (VSS) in mg/L.

3. Compare to typical TSS concentration in raw wastewater of 250 mg/L.

TSS CALCULATED IS TYPICAL.